Rubric for Modeling Essay Questions

Question 1: Explain why you chose each component depicted. Describe the relationships among all your components. What ecological process or processes does your model best depict?

Content Understanding Goal: Ecological diversity	
Level	Examples
0: Not score-able; no response.	"I don't know."
1 point: Poorly applies diversity, very	Interactions between biotic and abiotic
general	factors
2 points: Minimally applies one diversity	The insect diversity in the meadow is
concepts	greater because of more moisture.
3 points: Adequately applies diversity	Meadows tend to have greater diversity of
concepts to research project	primary producers due to increased
	sunlight than forested site
4 points: Shows mastery of diversity	The presence of large woody debris may
concepts, appropriately applies several	have more significantly impacted arthropod
concepts to research project	diversity than the absence of a canopy.

Question 2: Develop hypothesis, (or re-write hypothesis) using components in model. Describe how hypothesis (or secondary hypothesis) will be tested.

Learning Goal: Understand how to develop a testable hypothesis	
Level	Examples
0: Not score-able; no response.	"I don't know."
1 point: Poor	The clear cut will better handle disturbance
	because it has greater diversity.
2: Minimal, needs restructuring.	What is the diversity in the meadow v.s. a
	forest?
3: Adequately forms a testable hypothesis.	How does log decomposition effect
	arthropod diversity?
4: Shows mastery in forming a clear,	Species richness in fungivore arthropods
testable hypothesis and describe method of	will be greater in the forest opening than
testing hypothesis.	the forest. Measure species richness of
	fungivore arthropods captured in forest
	opening and in the forest at the same time,
	same experimental design.

Question 3: Choose I biotic component. List or describe as many subcomponents within that. Explain if redundancy might apply or not.

Learning Goal: Understand Ecological hierarchy and redundancy	
Score	Examples
0: Not score-able; no response.	"I don't know."
1: Poorly applies understanding of	Although the species might not be the
subcomponents	same, there were approximately the same

	number of species
2: Minimally applies understanding of subcomponents, no mention about redundancy	The guild with the largest biomass was predaceous arthropods.
3: Adequately applies subcomponents, some misconceptions about redundancy	Herbivore species richness was higher in the meadow, with large populations of different any species.
4: Shows mastery of understanding subcomponents and redundancy	The forested site had a g a number of predators unique to the forest, including two types of harvestmenproviding resiliency to allow it to function as a system in a disturbance.

Question 4: Discuss and illustrate feedback. Choose one component in your system and describe one change over short-term period. Describe any indirect effects you could expect. How could the patterns appear differently over longer time scales?

Learning Goal: Understanding complexity in Ecosystems, show Feedback and trace through possible indirect effects

Score	Examples
0: not score-able; no response.	"I don't know."
1: Poor understanding of feedback and	One example of feedback is the vegetation
indirect effects,	in the meadow.
2: Shows minimal understanding of and	A change in arthropods would ricochet up
application of feedback, minimal ability to	the food web and the entire ecosystem.
describe indirect effects,	
3: Shows good understanding of and	Ecosystems function through varied array
application of feedback, but less proficient	of relationships that are usually nonlinear
describing indirect effects. Only describes	and include many complex feedback
one plausible pattern of change (short term)	loops
4: Expertly understands and applies both	Feedback loops may have negative impacts
feedback and indirect effects (4 points).	(competition) placing limits on growth of
Describes plausible patterns of changes	herbivoresit may accelerate the rate of
over short and long time spans (4 points)	growth of plants over the short term, but
	due to feedback, not in the long term.

Question 5: Add specific disturbance, show how effects are propagated through system. Predict consequences of disturbance, describe experiment to test your prediction.

Learning goal: Ability to make accurate predictions, design a secondary experiment.	
Score	Examples
0: Not score-able; no response.	"I don't know."
1: Poor effects, no predictions, no	The meadow could handle the effects of a
experiment	drought better than the forest because the
	forest would become more susceptible to

	disease.
2:. Minimally shows effects, poor	Fire could change the soil respiration. You
predictions, poor experiment	could collect data in a patch before and
	after a fire
3: Adequately shows how effects are	After a hot "crown: fire, fungal and
propagated through system, makes modest	bacterial elements of soil will have been
predictions, designs ok experiment to test	eliminated, and the forest will take a longer
this.	time to recover its intricate relationships
	than the meadowpost-fire experiments
	could quantify the loss of soil microbes
4: Expertly shows how effects are	A fire would immediately increase light
propagated through the ecosystem, makes	reaching the ground, and burning would
plausible predictions, designs plausible	release nutrients, stimulating herbaceous
experiment to test this.	growthshort term, plants are not
	dependent upon symbiants, may no longer
	feed the microbesburn a test plot and
	take measurements over time

Question 6: How do you think complex ecosystems function? Explain yourreasoning, the better able it might be to withstandLearning Goal: Understand ecological complexity

Learning Goal: Understand ecological complexity	
Level	Examples
0: Not score-able; no response.	"I don't know."
1: Poor response	Complex systems are interdependent and,
	like lasagna, you can't tell the function of
	one part by just observing the final product.
2: Makes some errors in discussing aspects	Complex ecosystems move in and out of
of complexity	balance
3: Adequately discusses several aspects of	Patch level dynamics may play a
complexity	significant role in succession at local
	sites what happens over time in each
	patch may not conform to typical
	successional trajectories
4: Expertly describes the causal	The greater the order of complexity, the
mechanisms of systems, i.e., feedback,	better able it will be to withstand
direct and indirect and multiple effects,	degradationfungi providing nutrients to
pattern over different time and space	vegetation provides positive feedback
scales, subcomponents,	loopmultiple levels of relationships
	might provide compensatory pathways to
	overcome the loss of other species over
	time