Evaluating environmental drivers of disease outbreaks from seasonal trends

K.H. Nguyen

7/10/2020

The following code and associated figures correspond to datasets obtained from the CDC NORS (https://wwwn.cdc.gov/norsdashboard/) for the years 1998-2017. Questions can be sent to the corresponding author at karena(dot)nguyen@gmail(dot)com.

Set to your own working directory before beginning (example below)

```r
setwd("C:/Users/khnguy3/Documents/2020-TIEE/Data")
```

Use par(mfrow=c(1,3)) to view figures next to each other

Create a string for months because all data sets have months labeled by number

```r
months <- c("Jan", "Feb", "Mar", "April", "May", "June",
months_ordered <- factor(months, levels = c("Jan", "Feb", "Mar", "April", "May", "June",
```

Cryptosporidium

```r
setwd("C:/Users/khnguy3/Documents/2020-TIEE/Data")
crypto <- read.csv(file = "Cryptosporidium.csv", header=TRUE)

# Calculate the number of outbreaks per month
# Use the function length to count the number of rows (i.e., outbreaks) across yrs per month
crypto_outbreaks <- aggregate(crypto, by = list(crypto$Month), FUN = length)

crypto_outbreaks$Group.1 <- months_ordered  # Renames column to ordered months
```

```r
barplot(Month~Group.1, data= crypto_outbreaks,
        xlab = "Month", ylab = "Number of Outbreaks",
        main = "Cryptosporidium", ylim=c(0,140), las=2)
```
Calculate the average size of outbreaks
The function mean will calculate the avg # of illnesses per outbreak per month
crypto_size <- aggregate(Illnesses~Month, data=crypto, FUN = mean, na.rm = TRUE)
crypto_size$Month <- months_ordered

barplot(Illnesses~Month, data=crypto_size,
 xlab = "Month", ylab = "Avg. Number of Illnesses per Outbreak",
 main = "Cryptosporidium",
 ylim=c(0,30), las=2)
Calculate the total number of illnesses per month
Use the function sum to add the total number of illnesses per month
crypto_illnesses <- aggregate(Illnesses~Month, data= crypto, FUN = sum, na.rm = TRUE)
crypto_illnesses$Month <- months_ordered

barplot(Illnesses~Month, data=crypto_illnesses,
 xlab = "Month", ylab = "Total Number of Illnesses", main = "Cryptosporidium",
 ylim=c(0,3000), las=2)
Cryptosporidium

![Bar chart showing the total number of illnesses for each month from January to December for Cryptosporidium.]

Cyclospora

```r
setwd("C:/Users/khnguy3/Documents/2020-TIEE/Data")
cyclospora <- read.csv(file = "Cyclospora.csv", header=TRUE)

# Cyclospora does not have outbreaks documented for August - December
# we have to make a new data string
months2 <- c("Jan", "Feb", "Mar", "April", "May", "June", "July")

months_ordered2 <- factor(months2, levels = c("Jan", "Feb", "Mar", "April", "May", "June", "July"))

# Calculate the number of outbreaks per month
cyclo_outbreaks <- aggregate(cyclospora, by = list(cyclospora$Month), FUN = length)
cyclo_outbreaks$Group.1 <- months_ordered2

barplot(Month~Group.1, data= cyclo_outbreaks,
        xlab = "Month", ylab = "Number of Outbreaks",
        main = "Cyclospora", ylim=c(0,20), las=2)
```
Calculate the average size of outbreaks

cyclo_size <- aggregate(Illnesses~Month, data= cyclospora, FUN = mean, na.rm = TRUE)

cyclo_size$Month <- months_ordered2

barplot(Illnesses~Month, data=cyclo_size,
 xlab = "Month", ylab = "Avg. Number of Illnesses per Outbreak",
 main = "Cyclospora",
 ylim=c(0,250), las=2)
Calculate the total number of illnesses per month
cyclo_illnesses <- aggregate(Illnesses~Month, data=cyclospora, FUN=sum, na.rm=TRUE)
cyclo_illnesses$Month <- months_ordered2

barplot(Illnesses~Month, data=cyclo_illnesses,
xlab = "Month", ylab = "Total Number of Illnesses", main = "Cyclospora",
ylim=c(0,700), las=2)
Cyclospora

<table>
<thead>
<tr>
<th>Month</th>
<th>Total Number of Illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0</td>
</tr>
<tr>
<td>Feb</td>
<td>100</td>
</tr>
<tr>
<td>Mar</td>
<td>200</td>
</tr>
<tr>
<td>April</td>
<td>300</td>
</tr>
<tr>
<td>May</td>
<td>400</td>
</tr>
<tr>
<td>June</td>
<td>500</td>
</tr>
<tr>
<td>July</td>
<td>600</td>
</tr>
</tbody>
</table>

Escherichia

```r
setwd("C:/Users/khnguy3/Documents/2020-TIEE/Data")
ecoli <- read.csv(file = "Escherichia.csv", header=TRUE)

# Calculate the number of outbreaks per month
ecoli_outbreaks <- aggregate(ecoli, by = list(ecoli$Month), FUN = length)
ecoli_outbreaks$Group.1 <- months_ordered

barplot(Month~Group.1, data= ecoli_outbreaks,
exlab = "Month", ylab = "Number of Outbreaks",
main = "Escherichia", ylim=c(0,200), las=2)
```
Calculate the average size of outbreaks

```r
ecoli_size <- aggregate(Illnesses~Month, data= ecoli, FUN = mean, na.rm = TRUE)
ecoli_size$Month <- months_ordered

barplot(Illnesses~Month, data=ecoli_size,
        xlab = "Month", ylab = "Avg. Number of Illnesses per Outbreak",
        main = "Escherichia", ylim=c(0,25), las=2)
```
Calculate the total number of illnesses per month
ecoli_illnesses <- aggregate(Illnesses~Month, data= ecoli, FUN = sum, na.rm = TRUE)

ecoli_illnesses$Month <- months_ordered

barplot(Illnesses~Month, data=ecoli_illnesses,
 xlab = "Month", ylab = "Total Number of Illnesses",
 main = "Escherichia", ylim=c(0,3500),
 las=2)
Giardia

```r
setwd("C:/Users/khnguy3/Documents/2020-TIEE/Data")
giardia <- read.csv(file = "Giardia.csv", header=TRUE)

# Calculate the number of outbreaks per month
giardia_outbreaks <- aggregate(giardia, by = list(giardia$Month), FUN = length)

giardia_outbreaks$Group.1 <- months_ordered

barplot(Month~Group.1, data= giardia_outbreaks,
        xlab = "Month", ylab = "Number of Outbreaks",
        main = "Giardia", ylim=c(0,30), las=2)
```
Calculate the average size of outbreaks
giardia_size <- aggregate(Illnesses~Month, data= giardia, FUN = mean, na.rm = TRUE)

giardia_size$Month <- months_ordered

barplot(Illnesses~Month, data=giardia_size,
 xlab = "Month", ylab = "Avg. Number of Illnesses per Outbreak",
 main = "Giardia", ylim=c(0,15), las=2)
Calculate the total number of illnesses per month

giardia_illnesses <- aggregate(Illnesses~Month, data= giardia, FUN = sum, na.rm = TRUE)

giardia_illnesses$Month <- months_ordered

barplot(Illnesses~Month, data=giardia_illnesses,
 xlab = "Month", ylab = "Total Number of Illnesses",
 main = "Giardia", ylim=c(0,300), las=2)
Legionella

```r
setwd("C:/Users/khnguy3/Documents/2020-TIEE/Data")
legionella <- read.csv(file = "Legionella.csv", header=TRUE)

# Calculate the number of outbreaks per month
legionella_outbreaks <- aggregate(legionella, by = list(legionella$Month), FUN = length)

legionella_outbreaks$Group.1 <- months_ordered

barplot(Month~Group.1, data= legionella_outbreaks,
    xlab = "Month", ylab = "Number of Outbreaks",
    main = "Legionella", ylim=c(0,50), las=2)
```
Calculate the average size of outbreaks

```r
legionella_size <- aggregate(Illnesses~Month, data= legionella, FUN = mean, na.rm = TRUE)

legionella_size$Month <- months_ordered

barplot(Illnesses~Month, data=legionella_size,
        xlab = "Month", ylab = "Avg. Number of Illnesses per Outbreak",
        main = "Legionella", ylim=c(0,12), las=2)
```
Calculate the total number of illnesses per month
legionella_illnesses <- aggregate(Illnesses ~ Month, data = legionella, FUN = sum, na.rm = TRUE)

legionella_illnesses$Month <- months_ordered

barplot(Illnesses ~ Month, data = legionella_illnesses,
 xlab = "Month", ylab = "Total Number of Illnesses",
 main = "Legionella", ylim = c(0, 500), las = 2)